
WAMP Basic Profile

Workgroup:
Internet-Draft:
Published:
Intended Status:
Expires:
Author:

BiDirectional or Server-Initiated HTTP
WAMP
13 April 2024
Experimental
15 October 2024
T. Oberstein
typedef int GmbH

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 October 2024.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Oberstein Expires 15 October 2024 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents
1. WAMP Basic Profile

1.1. Basic vs Advanced Profile

1.2. Introduction

1.3. Protocol Overview

1.3.1. Realms, Sessions and Transports

1.3.2. Peers and Roles

1.3.3. Publish & Subscribe

1.3.4. Remote Procedure Calls

1.4. Design Aspects

1.4.1. Application Code

1.4.2. Language Agnostic

1.4.3. Symmetric Messaging

1.4.4. Peers with multiple Roles

1.4.5. Relationship to WebSocket

2. Building Blocks

2.1. Identifiers

2.1.1. URIs

2.1.2. IDs

2.2. Serializers

2.3. Transports

2.3.1. WebSocket Transport

2.3.2. Transport and Session Lifetime

2.3.3. Protocol Errors

3. Messages

3.1. Extensibility

3.2. No Polymorphism

3.3. Structure

5

5

5

6

6

7

7

8

8

9

9

9

9

10

10

10

10

12

13

14

14

15

16

17

18

18

19

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 2

3.4. Message Definitions

3.4.1. Session Lifecycle

3.4.2. Publish & Subscribe

3.4.3. Routed Remote Procedure Calls

3.5. Message Codes and Direction

3.6. Extension Messages

3.7. Empty Arguments and Keyword Arguments

4. Sessions

4.1. Session Establishment

4.1.1. HELLO

4.1.2. WELCOME

4.1.3. ABORT

4.2. Session Closing

4.2.1. GOODBYE

5. Publish and Subscribe

5.1. Subscribing and Unsubscribing

5.1.1. SUBSCRIBE

5.1.2. SUBSCRIBED

5.1.3. Subscribe ERROR

5.1.4. UNSUBSCRIBE

5.1.5. UNSUBSCRIBED

5.1.6. Unsubscribe ERROR

5.2. Publishing and Events

5.2.1. PUBLISH

5.2.2. PUBLISHED

5.2.3. Publish ERROR

5.2.4. EVENT

6. Remote Procedure Calls

6.1. Registering and Unregistering

6.1.1. REGISTER

19

19

20

21

23

24

24

25

27

27

30

31

32

32

34

34

35

36

37

37

37

38

38

39

40

40

41

42

42

43

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 3

6.1.2. REGISTERED

6.1.3. Register ERROR

6.1.4. UNREGISTER

6.1.5. UNREGISTERED

6.1.6. Unregister ERROR

6.2. Calling and Invocations

6.2.1. CALL

6.2.2. INVOCATION

6.2.3. YIELD

6.2.4. RESULT

6.2.5. Invocation ERROR

6.2.6. Call ERROR

6.3. Caller Leaving During an RPC Invocation

6.4. Callee Leaving During an RPC Invocation

7. Security Model

7.1. Ordering Guarantees

7.2. Transport Encryption and Integrity

7.3. Router Authentication

7.4. Client Authentication

7.5. Routers are trusted

8. Basic Profile URIs

8.1. Terminology

8.1.1. Fundamental

8.1.2. Authentication and Authorization (AA)

8.1.3. Remote Procedure Calls

8.1.4. Publish and Subscribe

9. IANA Considerations

10. Conformance Requirements

10.1. Terminology and Other Conventions

11. Contributors

44

44

44

45

45

46

46

47

49

50

51

51

52

53

54

54

55

55

55

56

56

58

59

60

60

61

61

62

62

62

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 4

12. Normative References

13. Informative References

Author's Address

63

63

63

1. WAMP Basic Profile
This document defines the Web Application Messaging Protocol (WAMP). WAMP is a routed
protocol that provides two messaging patterns: Publish & Subscribe and routed Remote
Procedure Calls. It is intended to connect application components in distributed applications.
WAMP uses WebSocket as its default transport, but can be transmitted via any other protocol that
allows for ordered, reliable, bi-directional, and message-oriented communications.

1.1. Basic vs Advanced Profile
This document first describes a Basic Profile for WAMP in its entirety, before describing an
Advanced Profile which extends the basic functionality of WAMP.

The separation into Basic and Advanced Profiles is intended to extend the reach of the protocol.
It allows implementations to start out with a minimal, yet operable and useful set of features,
and to expand that set from there. It also allows implementations that are tailored for resource-
constrained environments, where larger feature sets would not be possible. Here implementers
can weigh between resource constraints and functionality requirements, then implement an
optimal feature set for the circumstances.

Advanced Profile features are announced during session establishment, so that different
implementations can adjust their interactions to fit the commonly supported feature set.

1.2. Introduction
This section is non-normative.

The WebSocket protocol brings bi-directional real-time connections to the browser. It defines an
API at the message level, requiring users who want to use WebSocket connections in their
applications to define their own semantics on top of it.

The Web Application Messaging Protocol (WAMP) is intended to provide application developers
with the semantics they need to handle messaging between components in distributed
applications.

WAMP was initially defined as a WebSocket sub-protocol, which provided Publish & Subscribe
(PubSub) functionality as well as Remote Procedure Calls (RPC) for procedures implemented in a
WAMP router. Feedback from implementers and users of this was included in a second version of
the protocol which this document defines. Among the changes was that WAMP can now run over
any transport which is message-oriented, ordered, reliable, and bi-directional.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 5

WAMP is a routed protocol, with all components connecting to a WAMP Router, where the WAMP
Router performs message routing between the components.

WAMP provides two messaging patterns: Publish & Subscribe and routed Remote Procedure Calls.

Publish & Subscribe (PubSub) is an established messaging pattern where a component, the
Subscriber, informs the router that it wants to receive information on a topic (i.e., it subscribes to
a topic). Another component, a Publisher, can then publish to this topic, and the router
distributes events to all Subscribers.

Routed Remote Procedure Calls (RPCs) rely on the same sort of decoupling that is used by the
Publish & Subscribe pattern. A component, the Callee, announces to the router that it provides a
certain procedure, identified by a procedure name. Other components, Callers, can then call the
procedure, with the router invoking the procedure on the Callee, receiving the procedure's
result, and then forwarding this result back to the Caller. Routed RPCs differ from traditional
client-server RPCs in that the router serves as an intermediary between the Caller and the Callee.

The decoupling in routed RPCs arises from the fact that the Caller is no longer required to have
knowledge of the Callee; it merely needs to know the identifier of the procedure it wants to call.
There is also no longer a need for a direct connection between the caller and the callee, since all
traffic is routed. This enables the calling of procedures in components which are not reachable
externally (e.g. on a NATted connection) but which can establish an outgoing connection to the
WAMP router.

Combining these two patterns into a single protocol allows it to be used for the entire messaging
requirements of an application, thus reducing technology stack complexity, as well as
networking overheads.

1.3. Protocol Overview
This section is non-normative.

1.3.1. Realms, Sessions and Transports

A Realm is a WAMP routing and administrative domain, optionally protected by authentication
and authorization. WAMP messages are only routed within a Realm.

A Session is a transient conversation between two Peers attached to a Realm and running over a
Transport.

A Transport connects two WAMP Peers and provides a channel over which WAMP messages for a
WAMP Session can flow in both directions.

WAMP can run over any Transport which is message-based, bidirectional, reliable and ordered.

The default transport for WAMP is WebSocket , where WAMP is an officially registered
subprotocol.

[RFC6455]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 6

http://www.iana.org/assignments/websocket/websocket.xml

1.3.2. Peers and Roles

A WAMP Session connects two Peers, a Client and a Router. Each WAMP Peer MUST implement
one role, and MAY implement more roles.

A Client MAY implement any combination of the Roles:

Callee
Caller
Publisher
Subscriber

and a Router MAY implement either or both of the Roles:

Dealer
Broker

This document describes WAMP as in client-to-router communication. Direct client-to-
client communication is not supported by WAMP. Router-to-router communication MAY
be defined by a specific router implementation.

A Router is a component which implements one or both of the Broker and Dealer roles. A Client is
a component which implements any or all of the Subscriber, Publisher, Caller, or Callee roles.

WAMP Connections are established by Clients to a Router. Connections can use any transport that
is message-based, ordered, reliable and bi-directional, with WebSocket as the default transport.

WAMP Sessions are established over a WAMP Connection. A WAMP Session is joined to a Realm
on a Router. Routing occurs only between WAMP Sessions that have joined the same Realm.

The WAMP Basic Profile defines the parts of the protocol that are required to establish a WAMP
connection, as well as for basic interactions between the four client and two router roles. WAMP
implementations are required to implement the Basic Profile, at minimum.

The WAMP Advanced Profile defines additions to the Basic Profile which greatly extend the utility
of WAMP in real-world applications. WAMP implementations may support any subset of the
Advanced Profile features. They are required to announce those supported features during
session establishment.

•
•
•
•

•
•

1.3.3. Publish & Subscribe

The Publish & Subscribe ("PubSub") messaging pattern involves peers of three different roles:

Subscriber (Client)
Publisher (Client)
Broker (Router)

•
•
•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 7

A Publisher publishes events to topics by providing the topic URI and any payload for the event.
Subscribers of the topic will receive the event together with the event payload.

Subscribers subscribe to topics they are interested in with Brokers. Publishers initiate
publication first at Brokers. Brokers route events incoming from Publishers to Subscribers that
are subscribed to respective topics.

The Publisher and Subscriber will usually run application code, while the Broker works as a
generic router for events decoupling Publishers from Subscribers.

1.3.4. Remote Procedure Calls

The (routed) Remote Procedure Call ("RPC") messaging pattern involves peers of three different
roles:

Callee (Client)
Caller (Client)
Dealer (Router)

A Caller issues calls to remote procedures by providing the procedure URI and any arguments for
the call. The Callee will execute the procedure using the supplied arguments to the call and
return the result of the call to the Caller.

Callees register procedures they provide with Dealers. Callers initiate procedure calls first to
Dealers. Dealers route calls incoming from Callers to Callees implementing the procedure called,
and route call results back from Callees to Callers.

The Caller and Callee will usually run application code, while the Dealer works as a generic
router for remote procedure calls decoupling Callers and Callees.

•
•
•

1.4. Design Aspects
This section is non-normative.

WAMP was designed to be performant, safe and easy to implement. Its entire design was driven
by a implement, get feedback, adjust cycle.

An initial version of the protocol was publicly released in March 2012. The intent was to gain
insight through implementation and use, and integrate these into a second version of the
protocol, where there would be no regard for compatibility between the two versions. Several
interoperable, independent implementations were released, and feedback from the
implementers and users was collected.

The second version of the protocol, which this RFC covers, integrates this feedback. Routed
Remote Procedure Calls are one outcome of this, where the initial version of the protocol only
allowed the calling of procedures provided by the router. Another, related outcome was the strict
separation of routing and application logic.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 8

While WAMP was originally developed to use WebSocket as a transport, with JSON for
serialization, experience in the field revealed that other transports and serialization formats
were better suited to some use cases. For instance, with the use of WAMP in the Internet of
Things sphere, resource constraints play a much larger role than in the browser, so any reduction
of resource usage in WAMP implementations counts. This lead to the decoupling of WAMP from
any particular transport or serialization, with the establishment of minimum requirements for
both.

1.4.1. Application Code

WAMP is designed for application code to run within Clients, i.e. Peers having the roles Callee,
Caller, Publisher, and Subscriber.

Routers, i.e. Peers of the roles Brokers and Dealers are responsible for generic call and event
routing and do not run application code.

This allows the transparent exchange of Broker and Dealer implementations without affecting
the application and to distribute and deploy application components flexibly.

Note that a program that implements, for instance, the Dealer role might at the same
time implement, say, a built-in Callee. It is the Dealer and Broker that are generic, not
the program.

1.4.2. Language Agnostic

WAMP is language agnostic, i.e. can be implemented in any programming language. At the level
of arguments that may be part of a WAMP message, WAMP takes a 'superset of all' approach.
WAMP implementations may support features of the implementing language for use in
arguments, e.g. keyword arguments.

1.4.3. Symmetric Messaging

It is important to note that though the establishment of a Transport might have a inherent
asymmetry (like a TCP client establishing a WebSocket connection to a server), and Clients
establish WAMP sessions by attaching to Realms on Routers, WAMP itself is designed to be fully
symmetric for application components.

After the transport and a session have been established, any application component may act as
Caller, Callee, Publisher and Subscriber at the same time. And Routers provide the fabric on top
of which WAMP runs a symmetric application messaging service.

1.4.4. Peers with multiple Roles

Note that Peers might implement more than one role: e.g. a Peer might act as Caller, Publisher
and Subscriber at the same time. Another Peer might act as both a Broker and a Dealer.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 9

1.4.5. Relationship to WebSocket

WAMP uses WebSocket as its default transport binding, and is a registered WebSocket
subprotocol.

2. Building Blocks
WAMP is defined with respect to the following building blocks

Identifiers
Serializers
Transports

For each building block, WAMP only assumes a defined set of requirements, which allows to run
WAMP variants with different concrete bindings.

1.
2.
3.

2.1. Identifiers
2.1.1. URIs

WAMP needs to identify the following persistent resources:

Topics
Procedures
Errors

These are identified in WAMP using Uniform Resource Identifiers (URIs) that MUST be Unicode
strings.

When using JSON as WAMP serialization format, URIs (as other strings) are transmitted in UTF-8
encoding.

Examples

com.myapp.mytopic1
com.myapp.myprocedure1
com.myapp.myerror1

The URIs are understood to form a single, global, hierarchical namespace for WAMP. The namespace is
unified for topics, procedures and errors, that is these different resource types do NOT have separate
namespaces.

To avoid resource naming conflicts, the package naming convention from Java is used, where URIs SHOULD
begin with (reversed) domain names owned by the organization defining the URI.

Relaxed/Loose URIs

URI components (the parts between two .s, the head part up to the first ., the tail part after the last .) MUST

NOT contain a ., # or whitespace characters and MUST NOT be empty (zero-length strings).

1.
2.
3.

[RFC3986]

[RFC3629]

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 10

The restriction not to allow . in component strings is due to the fact that . is used to separate components,
and WAMP associates semantics with resource hierarchies, such as in pattern-based subscriptions that are
part of the Advanced Profile. The restriction not to allow empty (zero-length) strings as components is due
to the fact that this may be used to denote wildcard components with pattern-based subscriptions and
registrations in the Advanced Profile. The character # is not allowed since this is reserved for internal use
by Dealers and Brokers.

As an example, the following regular expression could be used in Python to check URIs according to the
above rules, when NO empty URI components are allowed:

When empty URI components are allowed (which is the case for specific messages that are part of the
Advanced Profile), this following regular expression can be used (shown used in Python):

Strict URIs

While the above rules MUST be followed, following a stricter URI rule is recommended: URI components
SHOULD only contain lower-case letters, digits and _.

As an example, the following regular expression could be used in Python to check URIs according to the
above rules, when NO empty URI components are allowed:

When empty URI components are allowed, which is the case for specific messages that are part of the
Advanced Profile, the following regular expression can be used (shown in Python):

Following the suggested regular expression for strict URIs will make URI components valid identifiers in
most languages (modulo URIs starting with a digit and language keywords) and the use of lower-case only
will make those identifiers unique in languages that have case-insensitive identifiers. Following this
suggestion can allow implementations to map topics, procedures and errors to the language environment in
a completely transparent way.

Reserved URIs

Further, application URIs MUST NOT use wamp as a first URI component, since this is reserved for URIs
predefined with the WAMP protocol itself.

Examples

wamp.error.not_authorized

wamp.error.procedure_already_exists

pattern = re.compile(r"^([^\s\.#]+\.)*([^\s\.#]+)$")

pattern = re.compile(r"^(([^\s\.#]+\.)|\.)*([^\s\.#]+)?$")

pattern = re.compile(r"^([0-9a-z_]+\.)*([0-9a-z_]+)$")

pattern = re.compile(r"^(([0-9a-z_]+\.)|\.)*([0-9a-z_]+)?$")

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 11

2.1.2. IDs

WAMP needs to identify the following ephemeral entities each in the scope noted:

Sessions (global scope)
Publications (global scope)
Subscriptions (router scope)
Registrations (router scope)
Requests (session scope)

These are identified in WAMP using IDs that are integers between (inclusive) 1 and 253 (9007199254740992):

IDs in the global scope MUST be drawn randomly from a uniform distribution over the complete range
[1, 2^53]
IDs in the router scope CAN be chosen freely by the specific router implementation
IDs in the session scope MUST be incremented by 1 beginning with 1 and wrapping to 1 after it reached
2^53 (for each direction - Client-to-Router and Router-to-Client) {#session_scope_id}

The reason to choose the specific lower bound as 1 rather than 0 is that 0 is the null-like (falsy)
value for many programming languages. The reason to choose the specific upper bound is that
2^53 is the largest integer such that this integer and all (positive) smaller integers can be
represented exactly in IEEE-754 doubles. Some languages (e.g. JavaScript) use doubles as their sole
number type. Most languages do have signed and unsigned 64-bit integer types that both can hold
any value from the specified range.

The following is a complete list of usage of IDs in the three categories for all WAMP messages. For a full
definition of these see messages section.

Global Scope IDs

WELCOME.Session

PUBLISHED.Publication

EVENT.Publication

Router Scope IDs

EVENT.Subscription

SUBSCRIBED.Subscription

REGISTERED.Registration

UNSUBSCRIBE.Subscription

UNREGISTER.Registration

INVOCATION.Registration

Session Scope IDs {#session_scope_ids}

SUBSCRIBE.Request

1.
2.
3.
4.
5.

•

•
•

•

•

•

•

•

•

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 12

SUBSCRIBED.Request (mirrored SUBSCRIBE.Request)

UNSUBSCRIBE.Request

UNSUBSCRIBED.Request (mirrored UNSUBSCRIBE.Request)

PUBLISH.Request

PUBLISHED.Request (mirrored PUBLISH.Request)

REGISTER.Request

REGISTERED.Request (mirrored REGISTER.Request)

UNREGISTER.Request

UNREGISTERED.Request (mirrored UNREGISTER.Request)

CALL.Request

RESULT.Request (mirrored CALL.Request)

CANCEL.Request (mirrored CALL.Request)

INVOCATION.Request

YIELD.Request (mirrored INVOCATION.Request)

INTERRUPT.Request (mirrored INVOCATION.Request)

ERROR.Request (mirrored original request ID)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2. Serializers
WAMP is a message based protocol that requires serialization of messages to octet sequences to
be sent out on the wire.

A message serialization format is assumed that (at least) provides the following types:

integer (non-negative)

string (UTF-8 encoded Unicode)

bool

list

dict (with string keys)

WAMP itself only uses the above types, e.g. it does not use the JSON data types number
(non-integer) and null. The application payloads transmitted by WAMP (e.g. in call
arguments or event payloads) may use other types a concrete serialization format
supports.

•

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 13

There is no required serialization or set of serializations for WAMP implementations (but each
implementation MUST, of course, implement at least one serialization format). Routers SHOULD
implement more than one serialization format, enabling components using different kinds of
serializations to connect to each other.

The WAMP Basic Profile defines the following bindings for message serialization:

JSON
MessagePack
CBOR

Other bindings for serialization may be defined in the WAMP Advanced Profile.

With JSON serialization, each WAMP message is serialized according to the JSON specification as
described in .

Further, binary data follows a convention for conversion to JSON strings. For details see the
Appendix.

With MessagePack serialization, each WAMP message is serialized according to the MessagePack
specification.

Version 5 or later of MessagePack MUST BE used, since this version is able to differentiate
between strings and binary values.

With CBOR serialization, each WAMP message is serialized according to the CBOR specification as
described in .

1.
2.
3.

[RFC7159]

[RFC8949]

2.3. Transports
WAMP assumes a transport with the following characteristics:

message-based
reliable
ordered
bidirectional (full-duplex)

There is no required transport or set of transports for WAMP implementations (but each
implementation MUST, of course, implement at least one transport). Routers SHOULD implement
more than one transport, enabling components using different kinds of transports to connect in
an application.

1.
2.
3.
4.

2.3.1. WebSocket Transport

The default transport binding for WAMP is WebSocket ().[RFC6455]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 14

https://msgpack.org/
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md

In the Basic Profile, WAMP messages are transmitted as WebSocket messages: each WAMP
message is transmitted as a separate WebSocket message (not WebSocket frame). The Advanced
Profile may define other modes, e.g. a batched mode where multiple WAMP messages are
transmitted via single WebSocket message.

The WAMP protocol MUST BE negotiated during the WebSocket opening handshake between
Peers using the WebSocket subprotocol negotiation mechanism (section 4).

WAMP uses the following WebSocket subprotocol identifiers (for unbatched modes):

wamp.2.json

wamp.2.msgpack

wamp.2.cbor

With wamp.2.json, all WebSocket messages MUST BE of type text (UTF8 encoded payload) and
use the JSON message serialization.

With wamp.2.msgpack, all WebSocket messages MUST BE of type binary and use the
MessagePack message serialization.

With wamp.2.cbor, all WebSocket messages MUST BE of type binary and use the CBOR message
serialization.

To avoid incompatibilities merely due to naming conflicts with WebSocket subprotocol
identifiers, implementers SHOULD register identifiers for additional serialization
formats with the official WebSocket subprotocol registry.

[RFC6455]

•

•

•

2.3.2. Transport and Session Lifetime

WAMP implementations MAY choose to tie the lifetime of the underlying transport connection
for a WAMP connection to that of a WAMP session, i.e. establish a new transport-layer connection
as part of each new session establishment. They MAY equally choose to allow re-use of a
transport connection, allowing subsequent WAMP sessions to be established using the same
transport connection.

The diagram below illustrates the full transport connection and session lifecycle for an
implementation which uses WebSocket over TCP as the transport and allows the re-use of a
transport connection.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 15

 ,------. ,------.
 | Peer | | Peer |
 `--+---' TCP established `--+---'
 |<--->|
 | |
 | TLS established |
 |+<--------------------------------------->+|
 |+ +|
 |+ WebSocket established +|
 |+|<------------------------------------->|+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| WebSocket closed |+|
 |+|<------------------------------------->|+|
 |+ +|
 |+ TLS closed +|
 |+<--------------------------------------->+|
 | |
 | TCP closed |
 |<--->|
 ,--+---. ,--+---.
 | Peer | | Peer |
 `------' `------'

2.3.3. Protocol Errors

WAMP implementations MUST abort sessions (disposing all of their resources such as
subscriptions and registrations) on protocol errors caused by offending peers.

Following scenarios have to be considered protocol errors:

Receiving WELCOME message, after session was established.

Receiving HELLO message, after session was established.

Receiving CHALLENGE message, after session was established.

Receiving GOODBYE message, before session was established.

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 16

Receiving ERROR message, before session was established.

Receiving ERROR message with invalid REQUEST.Type.

Receiving SUBSCRIBED message, before session was established.

Receiving UNSUBSCRIBED message, before session was established.

Receiving PUBLISHED message, before session was established.

Receiving RESULT message, before session was established.

Receiving REGISTERED message, before session was established.

Receiving UNREGISTERED message, before session was established.

Receiving INVOCATION message, before session was established.

Receiving message with non-sequential session scope request ID, such as SUBSCRIBE,

UNSUBSCRIBE, PUBLISH, REGISTER, UNREGISTER, and CALL. Note that there are exeptions for

CALL when the Progressive Call Invocations advanced feature is enabled. See the Progressive
Call Invocations section in the advanced profile for details.
Receiving protocol incompatible message, such as empty array, invalid WAMP message type
id, etc.
Catching error during message encoding/decoding.
Any other exceptional scenario explicitly defined in any relevant section of this specification
below (such as receiving a second HELLO within the lifetime of a session).

In all such cases WAMP implementations:

MUST send an ABORT message to the offending peer, having reason

wamp.error.protocol_violation and optional attributes in ABORT.Details such as a human
readable error message.
MUST abort the WAMP session by disposing any allocated subscriptions/registrations for that
particular client and without waiting for or processing any messages subsequently received
from the peer,
SHOULD also drop the WAMP connection at transport level (recommended to prevent denial
of service attacks)

•

•

•

•

•

•

•

•

•

•

•

•
•

1.

2.

3.

3. Messages
All WAMP messages are a list with a first element MessageType followed by one or more message
type specific elements:

 [MessageType|integer, ... one or more message type specific
 elements ...]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 17

The notation Element|type denotes a message element named Element of type type, where type is
one of

uri: a string URI as defined in URIs

id: an integer ID as defined in IDs

integer: a non-negative integer

string: a Unicode string, including the empty string

bool: a boolean value (true or false) - integers MUST NOT be used instead of boolean value

dict: a dictionary (map) where keys MUST be strings, keys MUST be unique and serialization
order is undefined (left to the serializer being used)
list: a list (array) where items can be again any of this enumeration

Example

A SUBSCRIBE message has the following format

Here is an example message conforming to the above format

•

•

•

•

•

•

•

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

 [32, 713845233, {}, "com.myapp.mytopic1"]

3.1. Extensibility
Some WAMP messages contain Options|dict or Details|dict elements. This allows for future
extensibility and implementations that only provide subsets of functionality by ignoring
unimplemented attributes. Keys in Options and Details MUST be of type string and MUST match
the regular expression [a-z][a-z0-9_]{2,} for WAMP predefined keys. Implementations MAY use
implementation-specific keys that MUST match the regular expression _[a-z0-9_]{3,}. Attributes
unknown to an implementation MUST be ignored.

3.2. No Polymorphism
For a given MessageType and number of message elements the expected types are uniquely
defined. Hence there are no polymorphic messages in WAMP. This leads to a message parsing
and validation control flow that is efficient, simple to implement and simple to code for rigorous
message format checking.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 18

3.3. Structure
The application payload (that is call arguments, call results, event payload etc) is always at the
end of the message element list. The rationale is: Brokers and Dealers have no need to inspect
(parse) the application payload. Their business is call/event routing. Having the application
payload at the end of the list allows Brokers and Dealers to skip parsing it altogether. This can
improve efficiency and performance.

3.4. Message Definitions
WAMP defines the following messages that are explained in detail in the following sections.

The messages concerning the WAMP session itself are mandatory for all Peers, i.e. a Client MUST
implement HELLO, ABORT and GOODBYE, while a Router MUST implement WELCOME, ABORT and

GOODBYE.

All other messages are mandatory per role, i.e. in an implementation that only provides a Client
with the role of Publisher MUST additionally implement sending PUBLISH and receiving

PUBLISHED and ERROR messages.

3.4.1. Session Lifecycle

3.4.1.1. HELLO
Sent by a Client to initiate opening of a WAMP session to a Router attaching to a Realm.

 [HELLO, Realm|uri, Details|dict]

3.4.1.2. WELCOME
Sent by a Router to accept a Client. The WAMP session is now open.

 [WELCOME, Session|id, Details|dict]

3.4.1.3. ABORT
Sent by a Peer*to abort the opening of a WAMP session. No response is expected.

 [ABORT, Details|dict, Reason|uri]

 [ABORT, Details|dict, Reason|uri, Arguments|list]

 [ABORT, Details|dict, Reason|uri, Arguments|list, ArgumentsKw|dict]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 19

3.4.1.4. GOODBYE
Sent by a Peer to close a previously opened WAMP session. Must be echo'ed by the receiving Peer.

 [GOODBYE, Details|dict, Reason|uri]

3.4.1.5. ERROR
Error reply sent by a Peer as an error response to different kinds of requests.

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri,
 Arguments|list]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri,
 Arguments|list, ArgumentsKw|dict]

3.4.2. Publish & Subscribe

3.4.2.1. PUBLISH
Sent by a Publisher to a Broker to publish an event.

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list,
 ArgumentsKw|dict]

3.4.2.2. PUBLISHED
Acknowledge sent by a Broker to a Publisher for acknowledged publications.

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

3.4.2.3. SUBSCRIBE
Subscribe request sent by a Subscriber to a Broker to subscribe to a topic.

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

3.4.2.4. SUBSCRIBED
Acknowledge sent by a Broker to a Subscriber to acknowledge a subscription.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 20

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

3.4.2.5. UNSUBSCRIBE
Unsubscribe request sent by a Subscriber to a Broker to unsubscribe a subscription.

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

3.4.2.6. UNSUBSCRIBED
Acknowledge sent by a Broker to a Subscriber to acknowledge unsubscription.

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

3.4.2.7. EVENT
Event dispatched by Broker to Subscribers for subscriptions the event was matching.

An event is dispatched to a Subscriber for a given Subscription|id only once. On the other

hand, a Subscriber that holds subscriptions with different Subscription|ids that all match
a given event will receive the event on each matching subscription.

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list, PUBLISH.ArgumentsKw|dict]

3.4.3. Routed Remote Procedure Calls

3.4.3.1. CALL
Call as originally issued by the Caller to the Dealer.

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 21

3.4.3.2. RESULT
Result of a call as returned by Dealer to Caller.

 [RESULT, CALL.Request|id, Details|dict]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

3.4.3.3. REGISTER
A Callees request to register an endpoint at a Dealer.

 [REGISTER, Request|id, Options|dict, Procedure|uri]

3.4.3.4. REGISTERED
Acknowledge sent by a Dealer to a Callee for successful registration.

 [REGISTERED, REGISTER.Request|id, Registration|id]

3.4.3.5. UNREGISTER
A Callees request to unregister a previously established registration.

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

3.4.3.6. UNREGISTERED
Acknowledge sent by a Dealer to a Callee for successful unregistration.

 [UNREGISTERED, UNREGISTER.Request|id]

3.4.3.7. INVOCATION
Actual invocation of an endpoint sent by Dealer to a Callee.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 22

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list, CALL.ArgumentsKw|dict]

3.4.3.8. YIELD
Actual yield from an endpoint sent by a Callee to Dealer.

 [YIELD, INVOCATION.Request|id, Options|dict]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list, ArgumentsKw|dict]

3.5. Message Codes and Direction
The following table lists the message type code for all messages defined in the WAMP basic
profile and their direction between peer roles.

Reserved codes may be used to identify additional message types in future standards documents.

"Tx" indicates the message is sent by the respective role, and "Rx" indicates the message is
received by the respective role.

Code Message Publisher Broker Subscriber Caller Dealer Callee

1 HELLO Tx Rx Tx Tx Rx Tx

2 WELCOME Rx Tx Rx Rx Tx Rx

3 ABORT TxRx TxRx TxRx TxRx TxRx TxRx

6 GOODBYE TxRx TxRx TxRx TxRx TxRx TxRx

8 ERROR Rx Tx Rx Rx TxRx TxRx

16 PUBLISH Tx Rx

17 PUBLISHED Rx Tx

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 23

Code Message Publisher Broker Subscriber Caller Dealer Callee

32 SUBSCRIBE Rx Tx

33 SUBSCRIBED Tx Rx

34 UNSUBSCRIBE Rx Tx

35 UNSUBSCRIBED Tx Rx

36 EVENT Tx Rx

48 CALL Tx Rx

50 RESULT Rx Tx

64 REGISTER Rx Tx

65 REGISTERED Tx Rx

66 UNREGISTER Rx Tx

67 UNREGISTERED Tx Rx

68 INVOCATION Tx Rx

70 YIELD Rx Tx

Table 1

3.6. Extension Messages
WAMP uses type codes from the core range [0, 255]. Implementations MAY define and use
implementation specific messages with message type codes from the extension message range
[256, 1023]. For example, a router MAY implement router-to-router communication by using
extension messages.

3.7. Empty Arguments and Keyword Arguments
Implementations SHOULD avoid sending empty Arguments lists.

E.g. a CALL message

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 24

where Arguments == [] SHOULD be avoided, and instead

SHOULD be sent.

Implementations SHOULD avoid sending empty ArgumentsKw dictionaries.

E.g. a CALL message

where ArgumentsKw == {} SHOULD be avoided, and instead

SHOULD be sent when Arguments is non-empty.

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list, ArgumentsKw|dict]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

4. Sessions
The message flow between Clients and Routers for opening and closing WAMP sessions involves
the following messages:

HELLO

WELCOME

ABORT

GOODBYE

The following state chart gives the states that a WAMP peer can be in during the session lifetime
cycle.

1.

2.

3.

4.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 25

The state transitions are listed in this table:

State

1 Sent HELLO

2 Received WELCOME

3 Sent GOODBYE

4 Received GOODBYE

 +--------------+
+--------(6)-------------> |
| | CLOSED <--------------------------+
| +------(4)-------------> <---+ |
	+--------------+		
	(1) (7)		
	+--------v-----+	(11)	
		+---+	
	+------------+ ESTABLISHING +----------------+		
		+--------------+	
			(10)
		(9)	
	(2) +--------v-----+ +--------v-------+		
		+------> FAILED <--(13)-+ CHALLENGING / +-+	
			+--------------+ +----------------+
		(8)	
	+-------v-------+		
		<-------------------(12)-------------+	
		ESTABLISHED	
		+--------------+	
	+---------------+		
	(3) (5)		
	+-------v-------+ +--------v-----+		
		+--+	
+-+ SHUTTING DOWN			CLOSING
		(14)	
+-------^-------+	+--------------+		
	----------+		
+----------------------------------+

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 26

State

5 Received GOODBYE

6 Sent GOODBYE

7 Received invalid HELLO / Send ABORT

8 Received HELLO or AUTHENTICATE

9 Received other

10 Received valid HELLO [needs authentication] / Send CHALLENGE

11 Received invalid AUTHENTICATE / Send ABORT

12 Received valid AUTHENTICATE / Send WELCOME

13 Received other

14 Received other / ignore

Table 2

4.1. Session Establishment

4.1.1. HELLO

After the underlying transport has been established, the opening of a WAMP session is initiated
by the Client sending a HELLO message to the Router

where

Realm is a string identifying the realm this session should attach to

Details is a dictionary that allows to provide additional opening information (see below).

The HELLO message MUST be the very first message sent by the Client after the transport has
been established.

In the WAMP Basic Profile without session authentication the Router will reply with a WELCOME
or ABORT message.

 [HELLO, Realm|uri, Details|dict]

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 27

A WAMP session starts its lifetime when the Router has sent a WELCOME message to the Client,
and ends when the underlying transport closes or when the session is closed explicitly by either
peer sending the GOODBYE message (see below).

It is a protocol error to receive a second HELLO message during the lifetime of the session and the
Peer MUST close the session if that happens.

Client: Role and Feature Announcement

WAMP uses Role & Feature announcement instead of protocol versioning to allow

implementations only supporting subsets of functionality
future extensibility

A Client must announce the roles it supports via Hello.Details.roles|dict, with a key mapping to a

Hello.Details.roles.<role>|dict where <role> can be:

publisher

subscriber

caller

callee

A Client can support any combination of the above roles but must support at least one role.

The <role>|dict is a dictionary describing features supported by the peer for that role.

This MUST be empty for WAMP Basic Profile implementations, and MUST be used by
implementations implementing parts of the Advanced Profile to list the specific set of features
they support.

Example: A Client that implements the Publisher and Subscriber roles of the WAMP Basic Profile.

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | WELCOME |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

•
•

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 28

Client: Agent Identification

When a software agent operates in a network protocol, it often identifies itself, its application
type, operating system, software vendor, or software revision, by submitting a characteristic
identification string to its operating peer.

Similar to what browsers do with the User-Agent HTTP header, both the HELLO and the WELCOME
message MAY disclose the WAMP implementation in use to its peer:

and

Example: A Client "HELLO" message.

Example: A Router "WELCOME" message.

 [1, "somerealm", {
 "roles": {
 "publisher": {},
 "subscriber": {}
 }
 }]

 HELLO.Details.agent|string

 WELCOME.Details.agent|string

 [1, "somerealm", {
 "agent": "AutobahnJS-0.9.14",
 "roles": {
 "subscriber": {},
 "publisher": {}
 }
 }]

 [2, 9129137332, {
 "agent": "Crossbar.io-0.10.11",
 "roles": {
 "broker": {}
 }
 }]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 29

4.1.2. WELCOME

A Router completes the opening of a WAMP session by sending a WELCOME reply message to the
Client.

where

Session MUST be a randomly generated ID specific to the WAMP session. This applies for the
lifetime of the session.
Details is a dictionary that allows to provide additional information regarding the open
session (see below).

In the WAMP Basic Profile without session authentication, a WELCOME message MUST be the first

message sent by the Router, directly in response to a HELLO message received from the Client.
Extensions in the Advanced Profile MAY include intermediate steps and messages for
authentication.

Note. The behavior if a requested Realm does not presently exist is router-specific. A
router may e.g. automatically create the realm, or deny the establishment of the session
with a ABORT reply message.

Router: Role and Feature Announcement

Similar to a Client announcing Roles and Features supported in the HELLO message, a Router

announces its supported Roles and Features in the WELCOME message.

A Router MUST announce the roles it supports via Welcome.Details.roles|dict, with a key mapping

to a Welcome.Details.roles.<role>|dict where <role> can be:

broker

dealer

A Router must support at least one role, and MAY support both roles.

The <role>|dict is a dictionary describing features supported by the peer for that role. With
WAMP Basic Profile implementations, this MUST be empty, but MUST be used by
implementations implementing parts of the Advanced Profile to list the specific set of features
they support

 [WELCOME, Session|id, Details|dict]

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 30

Example: A Router implementing the Broker role of the WAMP Basic Profile.

 [2, 9129137332, {
 "roles": {
 "broker": {}
 }
 }]

4.1.3. ABORT

Both the Router and the Client may abort a WAMP session by sending an ABORT message.

where

Reason MUST be a URI.

Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

No response to an ABORT message is expected.

There are few scenarios, when ABORT is used:

During session opening, if peer decided to abort connect.

Example

 [ABORT, Details|dict, Reason|uri]

 [ABORT, Details|dict, Reason|uri, Arguments|list]

 [ABORT, Details|dict, Reason|uri, Arguments|list, ArgumentsKw|dict]

•

•

•

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | ABORT |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 31

After session is opened, when protocol violation happens (see "Protocol errors" section).

Examples

Router received second HELLO message.

Client peer received second WELCOME message

 [3, {"message": "The realm does not exist."},
 "wamp.error.no_such_realm"]

•

•

 [3, {"message":
 "Received HELLO message after session was established."},
 "wamp.error.protocol_violation"]

•

 [3, {"message":
 "Received WELCOME message after session was established."},
 "wamp.error.protocol_violation"]

4.2. Session Closing

4.2.1. GOODBYE

A WAMP session starts its lifetime with the Router sending a WELCOME message to the Client and
ends when the underlying transport disappears or when the WAMP session is closed explicitly by
a GOODBYE message sent by one Peer and a GOODBYE message sent from the other Peer in
response.

where

Reason MUST be a URI.

Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

 [GOODBYE, Details|dict, Reason|uri]

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 32

Example. One Peer initiates closing

and the other peer replies

Example. One Peer initiates closing

and the other peer replies

Difference between ABORT and GOODBYE

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | ---------------->
 | |
 | GOODBYE |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | <----------------
 | |
 | GOODBYE |
 | ---------------->
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 [6, {"message": "The host is shutting down now."},
 "wamp.close.system_shutdown"]

 [6, {}, "wamp.close.goodbye_and_out"]

 [6, {}, "wamp.close.close_realm"]

 [6, {}, "wamp.close.goodbye_and_out"]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 33

The differences between ABORT and GOODBYE messages is that ABORT is never replied to by a

Peer, whereas GOODBYE must be replied to by the receiving Peer.

Though ABORT and GOODBYE are structurally identical, using different message types
serves to reduce overloaded meaning of messages and simplify message handling code.

5. Publish and Subscribe
All of the following features for Publish & Subscribe are mandatory for WAMP Basic Profile
implementations supporting the respective roles, i.e. Publisher, Subscriber and Broker.

5.1. Subscribing and Unsubscribing
The message flow between Clients implementing the role of Subscriber and Routers
implementing the role of Broker for subscribing and unsubscribing involves the following
messages:

SUBSCRIBE

SUBSCRIBED

UNSUBSCRIBE

UNSUBSCRIBED

ERROR

1.

2.

3.

4.

5.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 34

A Subscriber may subscribe to zero, one or more topics, and a Publisher publishes to topics
without knowledge of subscribers.

Upon subscribing to a topic via the SUBSCRIBE message, a Subscriber will receive any future
events published to the respective topic by Publishers, and will receive those events
asynchronously.

A subscription lasts for the duration of a session, unless a Subscriber opts out from a previously
established subscription via the UNSUBSCRIBE message.

A Subscriber may have more than one event handler attached to the same subscription.
This can be implemented in different ways: a) a Subscriber can recognize itself that it is
already subscribed and just attach another handler to the subscription for incoming
events, b) or it can send a new SUBSCRIBE message to broker (as it would be first) and

upon receiving a SUBSCRIBED.Subscription|id it already knows about, attach the handler
to the existing subscription

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | | |
 | | |
 | | SUBSCRIBE |
 | | <---------------------
 | | |
 | | SUBSCRIBED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | UNSUBSCRIBE |
 | | <---------------------
 | | |
 | | UNSUBSCRIBED or ERROR|
 | | --------------------->
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

5.1.1. SUBSCRIBE

A Subscriber communicates its interest in a topic to a Broker by sending a SUBSCRIBE message:

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 35

where

Request is a sequential ID in the session scope, incremented by the Subscriber and used to
correlate the Broker's response with the request.
Options is a dictionary that allows to provide additional subscription request details in a
extensible way. This is described further below.
Topic is the topic the Subscriber wants to subscribe to and is a URI.

Example

A Broker, receiving a SUBSCRIBE message, can fullfill or reject the subscription, so it answers with

SUBSCRIBED or ERROR messages.

•

•

•

 [32, 713845233, {}, "com.myapp.mytopic1"]

5.1.2. SUBSCRIBED

If the Broker is able to fulfill and allow the subscription, it answers by sending a SUBSCRIBED
message to the Subscriber

where

SUBSCRIBE.Request is the ID from the original subscription request.

Subscription is an ID chosen by the Broker for the subscription.

Example

Note. The Subscription ID chosen by the broker need not be unique to the subscription of

a single Subscriber, but may be assigned to the Topic, or the combination of the Topic and

some or all Options, such as the topic pattern matching method to be used. Then this ID

may be sent to all Subscribers for the Topic or Topic / Options combination. This allows
the Broker to serialize an event to be delivered only once for all actual receivers of the
event.

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

•

•

 [33, 713845233, 5512315355]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 36

In case of receiving a SUBSCRIBE message from the same Subscriber and to already

subscribed topic, Broker should answer with SUBSCRIBED message, containing the

existing Subscription|id.

5.1.3. Subscribe ERROR

When the request for subscription cannot be fulfilled by the Broker, the Broker sends back an
ERROR message to the Subscriber

where

SUBSCRIBE.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, SUBSCRIBE, SUBSCRIBE.Request|id, Details|dict, Error|uri]

•

•

 [8, 32, 713845233, {}, "wamp.error.not_authorized"]

5.1.4. UNSUBSCRIBE

When a Subscriber is no longer interested in receiving events for a subscription it sends an
UNSUBSCRIBE message

where

Request is a sequential ID in the session scope, incremented by the Subscriber and used to
correlate the Broker's response with the request.
SUBSCRIBED.Subscription is the ID for the subscription to unsubscribe from, originally handed
out by the Broker to the Subscriber.

Example

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

•

•

 [34, 85346237, 5512315355]

5.1.5. UNSUBSCRIBED

Upon successful unsubscription, the Broker sends an UNSUBSCRIBED message to the Subscriber

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 37

where

UNSUBSCRIBE.Request is the ID from the original request.

Example

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

•

 [35, 85346237]

5.1.6. Unsubscribe ERROR

When the request fails, the Broker sends an ERROR

where

UNSUBSCRIBE.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, UNSUBSCRIBE, UNSUBSCRIBE.Request|id, Details|dict, Error|uri]

•

•

 [8, 34, 85346237, {}, "wamp.error.no_such_subscription"]

5.2. Publishing and Events
The message flow between Publishers, a Broker and Subscribers for publishing to topics and
dispatching events involves the following messages:

PUBLISH

PUBLISHED

EVENT

ERROR

1.

2.

3.

4.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 38

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | PUBLISH | |
 |------------------> |
 | | |
 |PUBLISHED or ERROR| |
 |<------------------ |
 | | |
 | | EVENT |
 | | ------------------>
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

5.2.1. PUBLISH

When a Publisher requests to publish an event to some topic, it sends a PUBLISH message to a
Broker:

or

or

where

Request is a sequential ID in the session scope, incremented by the Publisher and used to
correlate the Broker's response with the request.
Options is a dictionary that allows to provide additional publication request details in an
extensible way. This is described further below.
Topic is the topic published to.

Arguments is a list of application-level event payload elements. The list may be of zero length.

ArgumentsKw is an optional dictionary containing application-level event payload, provided
as keyword arguments. The dictionary may be empty.

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 39

If the Broker allows and is able to fulfill the publication, the Broker will send the event to all
current Subscribers of the topic of the published event.

By default, publications are unacknowledged, and the Broker will not respond, whether the
publication was successful indeed or not. This behavior can be changed with the option
PUBLISH.Options.acknowledge|bool (see below).

Example

Example

Example

 [16, 239714735, {}, "com.myapp.mytopic1"]

 [16, 239714735, {}, "com.myapp.mytopic1", ["Hello, world!"]]

 [16, 239714735, {}, "com.myapp.mytopic1", [], {"color": "orange",
 "sizes": [23, 42, 7]}]

5.2.2. PUBLISHED

If the Broker is able to fulfill and allowing the publication, and PUBLISH.Options.acknowledge ==
true, the Broker replies by sending a PUBLISHED message to the Publisher:

where

PUBLISH.Request is the ID from the original publication request.

Publication is an ID chosen by the Broker for the publication.

Example

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

•

•

 [17, 239714735, 4429313566]

5.2.3. Publish ERROR

When the request for publication cannot be fulfilled by the Broker, and
PUBLISH.Options.acknowledge == true, the Broker sends back an ERROR message to the Publisher

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 40

where

PUBLISH.Request is the ID from the original publication request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, PUBLISH, PUBLISH.Request|id, Details|dict, Error|uri]

•

•

 [8, 16, 239714735, {}, "wamp.error.not_authorized"]

5.2.4. EVENT

When a publication is successful and a Broker dispatches the event, it determines a list of
receivers for the event based on Subscribers for the topic published to and, possibly, other
information in the event.

Note that the Publisher of an event will never receive the published event even if the Publisher is
also a Subscriber of the topic published to.

The Advanced Profile provides options for more detailed control over publication.

When a Subscriber is deemed to be a receiver, the Broker sends the Subscriber an EVENT
message:

or

or

where

SUBSCRIBED.Subscription is the ID for the subscription under which the Subscriber receives
the event - the ID for the subscription originally handed out by the Broker to the Subscribe.

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list, PUBLISH.ArgumentsKw|dict]

•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 41

PUBLISHED.Publication is the ID of the publication of the published event.

Details is a dictionary that allows the Broker to provide additional event details in a
extensible way. This is described further below.
PUBLISH.Arguments is the application-level event payload that was provided with the original
publication request.
PUBLISH.ArgumentsKw is the application-level event payload that was provided with the
original publication request.

Example

Example

Example

•

•

•

•

 [36, 5512315355, 4429313566, {}]

 [36, 5512315355, 4429313566, {}, ["Hello, world!"]]

 [36, 5512315355, 4429313566, {}, [], {"color": "orange", "sizes": [23,
42, 7]}]

6. Remote Procedure Calls
All of the following features for Remote Procedure Calls are mandatory for WAMP Basic Profile
implementations supporting the respective roles.

6.1. Registering and Unregistering
The message flow between Callees and a Dealer for registering and unregistering endpoints to be
called over RPC involves the following messages:

REGISTER

REGISTERED

UNREGISTER

UNREGISTERED

ERROR

1.

2.

3.

4.

5.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 42

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | | |
 | | |
 | | REGISTER |
 | | <---------------------
 | | |
 | | REGISTERED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | |
 | | UNREGISTER |
 | | <---------------------
 | | |
 | | UNREGISTERED or ERROR|
 | | --------------------->
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

6.1.1. REGISTER

A Callee announces the availability of an endpoint implementing a procedure with a Dealer by
sending a REGISTER message:

where

Request is a sequential ID in the session scope, incremented by the Callee and used to
correlate the Dealer's response with the request.
Options is a dictionary that allows to provide additional registration request details in a
extensible way. This is described further below.
Procedureis the procedure the Callee wants to register

Example

 [REGISTER, Request|id, Options|dict, Procedure|uri]

•

•

•

 [64, 25349185, {}, "com.myapp.myprocedure1"]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 43

6.1.2. REGISTERED

If the Dealer is able to fulfill and allowing the registration, it answers by sending a REGISTERED
message to the Callee:

where

REGISTER.Request is the ID from the original request.

Registration is an ID chosen by the Dealer for the registration.

Example

 [REGISTERED, REGISTER.Request|id, Registration|id]

•

•

 [65, 25349185, 2103333224]

6.1.3. Register ERROR

When the request for registration cannot be fulfilled by the Dealer, the Dealer sends back an
ERROR message to the Callee:

where

REGISTER.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, REGISTER, REGISTER.Request|id, Details|dict, Error|uri]

•

•

 [8, 64, 25349185, {}, "wamp.error.procedure_already_exists"]

6.1.4. UNREGISTER

When a Callee is no longer willing to provide an implementation of the registered procedure, it
sends an UNREGISTER message to the Dealer:

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 44

where

Request is a sequential ID in the session scope, incremented by the Callee and used to
correlate the Dealer's response with the request.
REGISTERED.Registration is the ID for the registration to revoke, originally handed out by the
Dealer to the Callee.

Example

•

•

 [66, 788923562, 2103333224]

6.1.5. UNREGISTERED

Upon successful unregistration, the Dealer sends an UNREGISTERED message to the Callee:

where

UNREGISTER.Request is the ID from the original request.

Example

 [UNREGISTERED, UNREGISTER.Request|id]

•

 [67, 788923562]

6.1.6. Unregister ERROR

When the unregistration request fails, the Dealer sends an ERROR message:

where

UNREGISTER.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, UNREGISTER, UNREGISTER.Request|id, Details|dict, Error|uri]

•

•

 [8, 66, 788923562, {}, "wamp.error.no_such_registration"]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 45

6.2. Calling and Invocations
The message flow between Callers, a Dealer and Callees for calling procedures and invoking
endpoints involves the following messages:

CALL

RESULT

INVOCATION

YIELD

ERROR

The execution of remote procedure calls is asynchronous, and there may be more than one call
outstanding. A call is called outstanding (from the point of view of the Caller), when a (final)
result or error has not yet been received by the Caller.

1.

2.

3.

4.

5.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD or ERROR |
 | | <----------------
 | | |
 | RESULT or ERROR | |
 | <---------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

6.2.1. CALL

When a Caller wishes to call a remote procedure, it sends a CALL message to a Dealer:

or

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 46

or

where

Request is a sequential ID in the session scope, incremented by the Caller and used to
correlate the Dealer's response with the request.
Options is a dictionary that allows to provide additional call request details in an extensible
way. This is described further below.
Procedure is the URI of the procedure to be called.

Arguments is a list of positional call arguments (each of arbitrary type). The list may be of
zero length.
ArgumentsKw is a dictionary of keyword call arguments (each of arbitrary type). The
dictionary may be empty.

Example

Example

Example

Example

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [48, 7814135, {}, "com.myapp.ping"]

 [48, 7814135, {}, "com.myapp.echo", ["Hello, world!"]]

 [48, 7814135, {}, "com.myapp.add2", [23, 7]]

 [48, 7814135, {}, "com.myapp.user.new", ["johnny"],
 {"firstname": "John", "surname": "Doe"}]

6.2.2. INVOCATION

If the Dealer is able to fulfill (mediate) the call and it allows the call, it sends a INVOCATION
message to the respective Callee implementing the procedure:

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 47

or

or

where

Request is a sequential ID in the session scope, incremented by the Dealer and used to
correlate the Callee's response with the request.
REGISTERED.Registration is the registration ID under which the procedure was registered at
the Dealer.
Details is a dictionary that allows to provide additional invocation request details in an
extensible way. This is described further below.
CALL.Arguments is the original list of positional call arguments as provided by the Caller.

CALL.ArgumentsKw is the original dictionary of keyword call arguments as provided by the
Caller.

Example

Example

Example

Example

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list, CALL.ArgumentsKw|dict]

•

•

•

•

•

 [68, 6131533, 9823526, {}]

 [68, 6131533, 9823527, {}, ["Hello, world!"]]

 [68, 6131533, 9823528, {}, [23, 7]]

 [68, 6131533, 9823529, {}, ["johnny"], {"firstname": "John", "surname": "Doe"}]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 48

6.2.3. YIELD

If the Callee is able to successfully process and finish the execution of the call, it answers by
sending a YIELD message to the Dealer:

or

or

where

INVOCATION.Request is the ID from the original invocation request.

Optionsis a dictionary that allows to provide additional options.

Arguments is a list of positional result elements (each of arbitrary type). The list may be of
zero length.
ArgumentsKw is a dictionary of keyword result elements (each of arbitrary type). The
dictionary may be empty.

Example

Example

Example

Example

 [YIELD, INVOCATION.Request|id, Options|dict]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list, ArgumentsKw|dict]

•

•

•

•

 [70, 6131533, {}]

 [70, 6131533, {}, ["Hello, world!"]]

 [70, 6131533, {}, [30]]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 49

 [70, 6131533, {}, [], {"userid": 123, "karma": 10}]

6.2.4. RESULT

The Dealer will then send a RESULT message to the original Caller:

or

or

where

CALL.Request is the ID from the original call request.

Details is a dictionary of additional details.

YIELD.Arguments is the original list of positional result elements as returned by the Callee.

YIELD.ArgumentsKw is the original dictionary of keyword result elements as returned by the
Callee.

Example

Example

Example

Example

 [RESULT, CALL.Request|id, Details|dict]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

•

•

•

•

 [50, 7814135, {}]

 [50, 7814135, {}, ["Hello, world!"]]

 [50, 7814135, {}, [30]]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 50

 [50, 7814135, {}, [], {"userid": 123, "karma": 10}]

6.2.5. Invocation ERROR

If the Callee is unable to process or finish the execution of the call, or the application code
implementing the procedure raises an exception or otherwise runs into an error, the Callee sends
an ERROR message to the Dealer:

or

or

where

INVOCATION.Request is the ID from the original INVOCATION request previously sent by the
Dealer to the Callee.
Details is a dictionary with additional error details.

Error is a URI that identifies the error of why the request could not be fulfilled.

Arguments is a list containing arbitrary, application defined, positional error information.
This will be forwarded by the Dealer to the Caller that initiated the call.
ArgumentsKw is a dictionary containing arbitrary, application defined, keyword-based error
information. This will be forwarded by the Dealer to the Caller that initiated the call.

Example

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri]

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri, Arguments|list]

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [8, 68, 6131533, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

6.2.6. Call ERROR

The Dealer will then send a ERROR message to the original Caller:

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 51

or

or

where

CALL.Request is the ID from the original CALL request sent by the Caller to the Dealer.

Details is a dictionary with additional error details.

Error is a URI identifying the type of error as returned by the Callee to the Dealer.

Arguments is a list containing the original error payload list as returned by the Callee to the
Dealer.
ArgumentsKw is a dictionary containing the original error payload dictionary as returned by
the Callee to the Dealer

Example

If the original call already failed at the Dealer before the call would have been forwarded to any
Callee, the Dealer will send an ERROR message to the Caller:

Example

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri, Arguments|list]

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [8, 48, 7814135, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

 [8, 48, 7814135, {}, "wamp.error.no_such_procedure"]

6.3. Caller Leaving During an RPC Invocation
If, after the Dealer sends an INVOCATION but before it receives a YIELD or ERROR response, the
Dealer detects the original Caller leaving or disconnecting, then the Dealer shall send an
INTERRUPT to the Callee if both the Dealer and Callee support the Call Canceling advanced
feature. That INTERRUPT message MUST have Options.mode set to "killnowait" to indicate to the
Callee that no response should be sent for the INTERRUPT.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 52

If either the Dealer or the Callee does not support the Call Canceling feature, then an INTERRUPT
message shall NOT sent in this scenario. Whether or not call canceling is supported, the Dealer
shall be prepared to discard a YIELD or ERROR response associated with that defunct call
request.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | INVOCATION |
 | | ---------------->
 ,--+---. | |
 |Caller| | |
 `------' | |
 (gone) | |
 | INTERRUPT |
 | ---------------->
 | |
 ,--+---. ,--+---.
 |Dealer| |Callee|
 `------' `------'

6.4. Callee Leaving During an RPC Invocation
After sending an INVOCATION message, if a Dealer detects that the Callee has left/disconnected
without sending a final YIELD or ERROR response, then the Dealer SHALL return an ERROR
message back to the Caller with a wamp.error.cancelled URI. The Dealer MAY provide additional
information via the ERROR payload arguments to clarify that the cancellation is due to the Callee
leaving before the call could be completed.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | ,--+---.
 | | |Callee|
 | | `------'
 | ERROR | (gone)
 |<--------------- |
 | |
 ,--+---. ,--+---.
 |Caller| |Dealer|
 `------' `------'

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 53

7. Security Model
The following discusses the security model for the Basic Profile. Any changes or extensions to this
for the Advanced Profile are discussed further on as part of the Advanced Profile definition.

All WAMP implementations, in particular Routers MUST support the following ordering
guarantees.

A WAMP Advanced Profile may provide applications options to relax ordering guarantees, in
particular with distributed calls.

7.1. Ordering Guarantees
Publish & Subscribe Ordering

Regarding Publish & Subscribe, the ordering guarantees are as follows:

If Subscriber A is subscribed to both Topic 1 and Topic 2, and Publisher B first publishes an
Event 1 to Topic 1 and then an Event 2 to Topic 2, then Subscriber A will first receive Event 1
and then Event 2. This also holds if Topic 1 and Topic 2 are identical.

In other words, WAMP guarantees ordering of events between any given pair of Publisher and
Subscriber.

Further, if Subscriber A subscribes to Topic 1, the SUBSCRIBED message will be sent by the Broker

to Subscriber A before any EVENT message for Topic 1.

There is no guarantee regarding the order of return for multiple subsequent subscribe requests.
A subscribe request might require the Broker to do a time-consuming lookup in some database,
whereas another subscribe request second might be permissible immediately.

Remote Procedure Call Ordering

Regarding Remote Procedure Calls, the ordering guarantees are as follows:

If Callee A has registered endpoints for both Procedure 1 and Procedure 2, and Caller B first
issues a Call 1 to Procedure 1 and then a Call 2 to Procedure 2, and both calls are routed to
Callee A, then Callee A will first receive an invocation corresponding to Call 1 and then Call 2.
This also holds if Procedure 1 and Procedure 2 are identical.

In other words, WAMP guarantees ordering of invocations between any given pair of Caller and
Callee.

There are no guarantees on the order of call results and errors in relation to different calls, since
the execution of calls upon different invocations of endpoints in Callees are running
independently. A first call might require an expensive, long-running computation, whereas a
second, subsequent call might finish immediately.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 54

Further, if Callee A registers for Procedure 1, the REGISTERED message will be sent by Dealer to

Callee A before any INVOCATION message for Procedure 1.

There is no guarantee regarding the order of return for multiple subsequent register requests. A
register request might require the Broker to do a time-consuming lookup in some database,
whereas another register request second might be permissible immediately.

7.2. Transport Encryption and Integrity
WAMP transports may provide (optional) transport-level encryption and integrity verification. If
so, encryption and integrity is point-to-point: between a Client and the Router it is connected to.

Transport-level encryption and integrity is solely at the transport-level and transparent to WAMP.
WAMP itself deliberately does not specify any kind of transport-level encryption.

Implementations that offer TCP based transport such as WAMP-over-WebSocket or WAMP-over-
RawSocket SHOULD implement Transport Layer Security (TLS).

WAMP deployments are encouraged to stick to a TLS-only policy with the TLS code and setup
being hardened.

Further, when a Client connects to a Router over a local-only transport such as Unix domain
sockets, the integrity of the data transmitted is implicit (the OS kernel is trusted), and the privacy
of the data transmitted can be assured using file system permissions (no one can tap a Unix
domain socket without appropriate permissions or being root).

7.3. Router Authentication
To authenticate Routers to Clients, deployments MUST run TLS and Clients MUST verify the
Router server certificate presented. WAMP itself does not provide mechanisms to authenticate a
Router (only a Client).

The verification of the Router server certificate can happen

against a certificate trust database that comes with the Clients operating system
against an issuing certificate/key hard-wired into the Client
by using new mechanisms like DNS-based Authentication of Named Enitities (DNSSEC)/TLSA

Further, when a Client connects to a Router over a local-only transport such as Unix domain
sockets, the file system permissions can be used to create implicit trust. E.g. if only the OS user
under which the Router runs has the permission to create a Unix domain socket under a specific
path, Clients connecting to that path can trust in the router authenticity.

1.
2.
3.

7.4. Client Authentication
Authentication of a Client to a Router at the WAMP level is not part of the basic profile.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 55

When running over TLS, a Router MAY authenticate a Client at the transport level by doing a
client certificate based authentication.

7.5. Routers are trusted
Routers are trusted by Clients. In particular, Routers can read (and modify) any application
payload transmitted in events, calls, call results and call errors (the Arguments or ArgumentsKw
message fields).

Hence, Routers do not provide confidentiality with respect to application payload, and also do
not provide authenticity or integrity of application payloads that could be verified by a receiving
Client.

Routers need to read the application payloads in cases of automatic conversion between
different serialization formats.

Further, Routers are trusted to actually perform routing as specified. E.g. a Client that publishes
an event has to trust a Router that the event is actually dispatched to all (eligible) Subscribers by
the Router.

A rogue Router might deny normal routing operation without a Client taking notice.

8. Basic Profile URIs
WAMP pre-defines the following error URIs for the Basic Profile. WAMP peers SHOULD only use
the defined error messages.

Incorrect URIs

When a Peer provides an incorrect URI for any URI-based attribute of a WAMP message (e.g.
realm, topic), then the other Peer MUST respond with an ERROR message and give the following
Error URI:

Interaction

Peer provided an incorrect URI for any URI-based attribute of WAMP message, such as realm,
topic or procedure

A Dealer could not perform a call, since no procedure is currently registered under the given
URI.

 wamp.error.invalid_uri

 wamp.error.invalid_uri

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 56

A procedure could not be registered, since a procedure with the given URI is already registered.

A Dealer could not perform an unregister, since the given registration is not active.

A Broker could not perform an unsubscribe, since the given subscription is not active.

A call failed since the given argument types or values are not acceptable to the called procedure.
In this case the Callee may throw this error. Alternatively a Router may throw this error if it
performed payload validation of a call, call result, call error or publish, and the payload did not
conform to the requirements.

A Dealer or Callee canceled a call previously issued

A message could not be delivered due to transport payload size limits.

Session Close

The Peer is shutting down completely - used as a GOODBYE (or ABORT) reason.

The Peer want to leave the realm - used as a GOODBYE reason.

 wamp.error.no_such_procedure

 wamp.error.procedure_already_exists

 wamp.error.no_such_registration

 wamp.error.no_such_subscription

 wamp.error.invalid_argument

 wamp.error.canceled

 wamp.error.payload_size_exceeded

 wamp.close.system_shutdown

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 57

A Peer acknowledges ending of a session - used as a GOODBYE reply reason.

A Peer received invalid WAMP protocol message (e.g. HELLO message after session was already

established) - used as a ABORT reply reason. More detailed information may be provided by using

the Arguments|list or ArgumentsKw|dict.

Authorization

A join, call, register, publish or subscribe failed, since the Peer is not authorized to perform the
operation.

A Dealer or Broker could not determine if the Peer is authorized to perform a join, call, register,
publish or subscribe, since the authorization operation itself failed. E.g. a custom authorizer did
run into an error.

Peer wanted to join a non-existing realm (and the Router did not allow to auto-create the realm).

A Peer was to be authenticated under a Role that does not (or no longer) exists on the Router. For
example, the Peer was successfully authenticated, but the Role configured does not exists - hence
there is some misconfiguration in the Router.

 wamp.close.close_realm

 wamp.close.goodbye_and_out

 wamp.error.protocol_violation

 wamp.error.not_authorized

 wamp.error.authorization_failed

 wamp.error.no_such_realm

 wamp.error.no_such_role

8.1. Terminology
This chapter contains a list of technical terms used in this specification, along with their
respective meanings.

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 58

Implementations SHOULD use terms as defined here in their public interfaces and
documentation, and SHOULD NOT reinvent or reinterpret terms. Users SHOULD be able to
transfer their WAMP knowledge from one implementation to another. This is to support the
overarching goal of WAMP to free application developers from restrictions when building
distributed applications, both at the network level, and when choosing (or switching) the WAMP
implementations used.

Our goal is to maximize user choice and experience when developing WAMP-based
applications, both formally (open protocol and open source) as well as practically (switching
costs).

8.1.1. Fundamental

Term Definition

User A person (or organization) running a WAMP Client or Router

Client A program run by a User, with application code using WAMP for application-
level communications

Router A program run by a User, with middleware code using WAMP to provide
application routing services

Peer A WAMP Client or Router. An implementation might embed, provide or use
both roles

Realm Isolated WAMP URI namespace serving as a routing and administrative
domain, optionally protected by AA

Transport A message-based, reliable, ordered, bidirectional (full-duplex) channel over
which Peers communicate

Connection An underlying entity (if any) carrying the Transport, e.g. a network connection,
pipe, queue or such

Session Transient conversation between a Client and a Router, within a Realm and over
a Transport

Message Indivisible unit of information transmitted between peers

Serializer Encodes WAMP messages, with application payloads, into byte strings for
transport

Table 3

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 59

8.1.2. Authentication and Authorization (AA)

Term Definition

Authentication Establishes the identity of a Session within a Realm

Principal A Principal (authid) is any User that can be authenticated under a

Realm (realm) and runs in the security context of a Role (authrole)
within that Realm.

Credentials The authentication information and secrets used during

Authorization A decision on permitting a Principal to perform a given Action on an
URI or URI pattern

Access Control Policy for selective restriction of Actions on URIs or URI patterns
performed by Principals

Role-based Access
Control (RBAC)

An Access Control policy based on Realm (realm), Principal's Role

(authrole), URI or URI pattern, and Action

Discretionary
Access Control

An Access Control policy controlled by Users and enforced by Routers

Mandatory Access
Control

An Access Control policy controlled by Router Administrators or Realm
Owners, and enforced by Routers

Capability-based
Access Control

An Access Control policy where Callers, Callees, Publishers, Subscribers
directly share capabilities with each other

Subject The originating Session of an Action in the context of Authorization

Object A (fully qualified) URI or URI pattern representing the target of an
Action in the context of Authorization

Action One of the four core WAMP operations: register, call, subscribe, and
publish

Table 4

8.1.3. Remote Procedure Calls

Term Definition

Caller A Caller is a Session that calls, with application payloads, a (fully qualified)
Procedure for call routing

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 60

Term Definition

Callee A Callee is a Session that responds to Procedure call invocations by yielding
back application result payloads

Procedure A Procedure is an URI or URI pattern that can be registered for call routing by
Callees

Registration A Router record resulting from a Callee successfully registering a Procedure
for call routing

Call A transient Router record resulting from a Caller successfully calling a
Procedure for call routing

Invocation A call request and payload that are routed to a Callee having a matching
Registration for the called Procedure

Table 5

8.1.4. Publish and Subscribe

Term Definition

Publisher A Publisher is a Session that publishes application payloads to a (fully
qualified) Topic for event routing

Subscriber A Subscriber is a Session that subscribes to a Topic to receive application
payloads on matching events

Topic A Topic is an URI or URI pattern that can be subscribed to for event routing by
Subscribers

Subscription A Router record resulting from a Subscriber successfully subscribing to a
Topic for event routing

Publication A transient Router record resulting from a Publisher successfully publishing
to a Topic for event routing

Event A publication that is routed to Subscribers having matching Subscriptions to
the published Topic.

Table 6

9. IANA Considerations
WAMP uses the Subprotocol Identifier wamp registered with the WebSocket Subprotocol Name
Registry, operated by the Internet Assigned Numbers Authority (IANA).

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 61

https://www.iana.org/assignments/websocket/websocket.xhtml
https://www.iana.org/assignments/websocket/websocket.xhtml

10. Conformance Requirements
All diagrams, examples, and notes in this specification are non-normative, as are all sections
explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119 .

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space
characters" or "return false and abort these steps") are to be interpreted with the meaning of the
key word ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps MAY be implemented in any
manner, so long as the end result is equivalent.

[RFC2119]

10.1. Terminology and Other Conventions
Key terms such as named algorithms or definitions are indicated like this when they first occur,
and are capitalized throughout the text.

11. Contributors
WAMP was developed in an open process from the beginning, and a lot of people have
contributed ideas and other feedback. Here we are listing people who have opted in to being
mentioned:

Alexander Goedde
Amber Brown
Andrew Gillis
David Chappelle
Elvis Stansvik
Emile Cormier
Felipe Gasper
Johan 't Hart
Josh Soref
Konstantin Burkalev
Pahaz Blinov
Paolo Angioletti
Roberto Requena
Roger Erens
Christoph Herzog

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 62

[RFC3629]

[RFC3986]

[RFC6455]

[RFC7159]

[RFC8949]

[RFC2119]

12. Normative References
, , , ,

, November 2003,
.

, , and ,
, , , , January 2005,

.

 and , , ,
, December 2011, .

, ,
, , March 2014,
.

 and , ,
, , , December 2020,

.

13. Informative References
, , ,

, , March 1997,
.

Tobias Oberstein
Zhigang Wang

•
•

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Fette, I. A. Melnikov "The WebSocket Protocol" RFC 6455 DOI 10.17487/
RFC6455 <https://www.rfc-editor.org/info/rfc6455>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
RFC 7159 DOI 10.17487/RFC7159 <https://www.rfc-editor.org/info/
rfc7159>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Author's Address
Tobias Oberstein
typedef int GmbH

tobias.oberstein@typedefint.euEmail:

Internet-Draft WAMP-BP April 2024

Oberstein Expires 15 October 2024 Page 63

https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
mailto:tobias.oberstein@typedefint.eu

	WAMP Basic Profile
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. WAMP Basic Profile
	1.1. Basic vs Advanced Profile
	1.2. Introduction
	1.3. Protocol Overview
	1.3.1. Realms, Sessions and Transports
	1.3.2. Peers and Roles
	1.3.3. Publish & Subscribe
	1.3.4. Remote Procedure Calls

	1.4. Design Aspects
	1.4.1. Application Code
	1.4.2. Language Agnostic
	1.4.3. Symmetric Messaging
	1.4.4. Peers with multiple Roles
	1.4.5. Relationship to WebSocket

	2. Building Blocks
	2.1. Identifiers
	2.1.1. URIs
	2.1.2. IDs

	2.2. Serializers
	2.3. Transports
	2.3.1. WebSocket Transport
	2.3.2. Transport and Session Lifetime
	2.3.3. Protocol Errors

	3. Messages
	3.1. Extensibility
	3.2. No Polymorphism
	3.3. Structure
	3.4. Message Definitions
	3.4.1. Session Lifecycle
	3.4.1.1. HELLO
	3.4.1.2. WELCOME
	3.4.1.3. ABORT
	3.4.1.4. GOODBYE
	3.4.1.5. ERROR

	3.4.2. Publish & Subscribe
	3.4.2.1. PUBLISH
	3.4.2.2. PUBLISHED
	3.4.2.3. SUBSCRIBE
	3.4.2.4. SUBSCRIBED
	3.4.2.5. UNSUBSCRIBE
	3.4.2.6. UNSUBSCRIBED
	3.4.2.7. EVENT

	3.4.3. Routed Remote Procedure Calls
	3.4.3.1. CALL
	3.4.3.2. RESULT
	3.4.3.3. REGISTER
	3.4.3.4. REGISTERED
	3.4.3.5. UNREGISTER
	3.4.3.6. UNREGISTERED
	3.4.3.7. INVOCATION
	3.4.3.8. YIELD

	3.5. Message Codes and Direction
	3.6. Extension Messages
	3.7. Empty Arguments and Keyword Arguments

	4. Sessions
	4.1. Session Establishment
	4.1.1. HELLO
	4.1.2. WELCOME
	4.1.3. ABORT

	4.2. Session Closing
	4.2.1. GOODBYE

	5. Publish and Subscribe
	5.1. Subscribing and Unsubscribing
	5.1.1. SUBSCRIBE
	5.1.2. SUBSCRIBED
	5.1.3. Subscribe ERROR
	5.1.4. UNSUBSCRIBE
	5.1.5. UNSUBSCRIBED
	5.1.6. Unsubscribe ERROR

	5.2. Publishing and Events
	5.2.1. PUBLISH
	5.2.2. PUBLISHED
	5.2.3. Publish ERROR
	5.2.4. EVENT

	6. Remote Procedure Calls
	6.1. Registering and Unregistering
	6.1.1. REGISTER
	6.1.2. REGISTERED
	6.1.3. Register ERROR
	6.1.4. UNREGISTER
	6.1.5. UNREGISTERED
	6.1.6. Unregister ERROR

	6.2. Calling and Invocations
	6.2.1. CALL
	6.2.2. INVOCATION
	6.2.3. YIELD
	6.2.4. RESULT
	6.2.5. Invocation ERROR
	6.2.6. Call ERROR

	6.3. Caller Leaving During an RPC Invocation
	6.4. Callee Leaving During an RPC Invocation

	7. Security Model
	7.1. Ordering Guarantees
	7.2. Transport Encryption and Integrity
	7.3. Router Authentication
	7.4. Client Authentication
	7.5. Routers are trusted

	8. Basic Profile URIs
	8.1. Terminology
	8.1.1. Fundamental
	8.1.2. Authentication and Authorization (AA)
	8.1.3. Remote Procedure Calls
	8.1.4. Publish and Subscribe

	9. IANA Considerations
	10. Conformance Requirements
	10.1. Terminology and Other Conventions

	11. Contributors
	12. Normative References
	13. Informative References
	Author's Address

